140 research outputs found

    Simulation and theory of fluid demixing and interfacial tension of mixtures of colloids and non-ideal polymers

    Full text link
    An extension of the Asakura-Oosawa-Vrij model of hard sphere colloids and non-adsorbing polymers, that takes polymer non-ideality into account through a repulsive stepfunction pair potential between polymers, is studied with grand canonical Monte Carlo simulations and density functional theory. Simulation results validate previous theoretical findings for the shift of the bulk fluid demixing binodal upon increasing strength of polymer-polymer repulsion, promoting the tendency to mix. For increasing strength of the polymer-polymer repulsion, simulation and theory consistently predict the interfacial tension of the free colloidal liquid-gas interface to decrease significantly for fixed colloid density difference in the coexisting phases, and to increase for fixed polymer reservoir packing fraction.Comment: 10 pages, 4 figure

    Langevin Dynamics simulations of a 2-dimensional colloidal crystal under confinement and shear

    Full text link
    Langevin Dynamics simulations are used to study the effect of shear on a two-dimensional colloidal crystal confined by structured parallel walls. When walls are sheared very slowly, only two or three crystalline layers next to the walls move along with them, while the inner layers of the crystal are only slightly tilted. At higher shear velocities, this inner part of the crystal breaks into several pieces with different orientations. The velocity profile across the slit is reminiscent of shear-banding in flowing soft materials, where liquid and solid regions coexist; the difference, however, is that in the latter case the solid regions are glassy while here they are crystalline. At even higher shear velocities, the effect of the shearing becomes smaller again. Also the effective temperature near the walls (deduced from the velocity distributions of the particles) decreases again when the wall velocity gets very large. When the walls are placed closer together, thereby introducing a misfit, a structure containing a soliton staircase arises in simulations without shear. Introducing shear increases the disorder in these systems until no solitons are visible any more. Instead, similar structures like in the case without misfit result. At high shear rates, configurations where the incommensurability of the crystalline structure is compensated by the creation of holes become relevant

    Reduced-order hybrid multiscale method combining the molecular dynamics and the discontinuous-galerkin method

    Get PDF
    We present a new reduced-order hybrid multiscale method to simulate com- plex fluids. continuum and molecular descriptions. We follow the framework of the heterogeneous multi-scale method (HMM) that makes use of the scale separation into macro- and micro-levels. On the macro-level, the governing equations of the incompressible flow are the continuity and momentum equations. The equations are solved using a high-order accurate discontinuous Galerkin Finite Element Method (dG) and implemented in the BoSSS code. The missing information on the macro-level is represented by the unknown stress tensor evaluated by means of the molecular dynam- ics (MD) simulations on the micro-level. We shear the microscopic system by applying Lees-Edwards boundary conditions and either an isokinetic or Lowe-Andersen thermostat. The data obtained from the MD simulations underlie large stochastic errors that can be controlled by means of the least-square approximation. In order to reduce a large number of computationally expensive MD runs, we apply the reduced order approach. Nume al experiments confirm the robustness of our newly developed hybrid MD-dG method

    Monte Carlo study of the evaporation/condensation transition on different Ising lattices

    Full text link
    In 2002 Biskup et al. [Europhys. Lett. 60, 21 (2002)] sketched a rigorous proof for the behavior of the 2D Ising lattice gas, at a finite volume and a fixed excess \delta M of particles (spins) above the ambient gas density (spontaneous magnetisation). By identifying a dimensionless parameter \Delta (\delta M) and a universal constant \Delta_c, they showed in the limit of large system sizes that for \Delta < \Delta_c the excess is absorbed in the background (``evaporated'' system), while for \Delta > \Delta_c a droplet of the dense phase occurs (``condensed'' system). To check the applicability of the analytical results to much smaller, practically accessible system sizes, we performed several Monte Carlo simulations for the 2D Ising model with nearest-neighbour couplings on a square lattice at fixed magnetisation M. Thereby, we measured the largest minority droplet, corresponding to the condensed phase, at various system sizes (L=40, >..., 640). With analytic values for for the spontaneous magnetisation m_0, the susceptibility \chi and the Wulff interfacial free energy density \tau_W for the infinite system, we were able to determine \lambda numerically in very good agreement with the theoretical prediction. Furthermore, we did simulations for the spin-1/2 Ising model on a triangular lattice and with next-nearest-neighbour couplings on a square lattice. Again, finding a very good agreement with the analytic formula, we demonstrate the universal aspects of the theory with respect to the underlying lattice. For the case of the next-nearest-neighbour model, where \tau_W is unknown analytically, we present different methods to obtain it numerically by fitting to the distribution of the magnetisation density P(m).Comment: 14 pages, 17 figures, 1 tabl

    On the size of knots in ring polymers

    Full text link
    We give two different, statistically consistent definitions of the length l of a prime knot tied into a polymer ring. In the good solvent regime the polymer is modelled by a self avoiding polygon of N steps on cubic lattice and l is the number of steps over which the knot ``spreads'' in a given configuration. An analysis of extensive Monte Carlo data in equilibrium shows that the probability distribution of l as a function of N obeys a scaling of the form p(l,N) ~ l^(-c) f(l/N^D), with c ~ 1.25 and D ~ 1. Both D and c could be independent of knot type. As a consequence, the knot is weakly localized, i.e. ~ N^t, with t=2-c ~ 0.75. For a ring with fixed knot type, weak localization implies the existence of a peculiar characteristic length l^(nu) ~ N^(t nu). In the scaling ~ N^(nu) (nu ~0.58) of the radius of gyration of the whole ring, this length determines a leading power law correction which is much stronger than that found in the case of unrestricted topology. The existence of such correction is confirmed by an analysis of extensive Monte Carlo data for the radius of gyration. The collapsed regime is studied by introducing in the model sufficiently strong attractive interactions for nearest neighbor sites visited by the self-avoiding polygon. In this regime knot length determinations can be based on the entropic competition between two knotted loops separated by a slip link. These measurements enable us to conclude that each knot is delocalized (t ~ 1).Comment: 29 pages, 14 figure

    Curvature Dependence of Surface Free Energy of Liquid Drops and Bubbles: A Simulation Study

    Full text link
    We study the excess free energy due to phase coexistence of fluids by Monte Carlo simulations using successive umbrella sampling in finite LxLxL boxes with periodic boundary conditions. Both the vapor-liquid phase coexistence of a simple Lennard-Jones fluid and the coexistence between A-rich and B-rich phases of a symmetric binary (AB) Lennard-Jones mixture are studied, varying the density rho in the simple fluid or the relative concentration x_A of A in the binary mixture, respectively. The character of phase coexistence changes from a spherical droplet (or bubble) of the minority phase (near the coexistence curve) to a cylindrical droplet (or bubble) and finally (in the center of the miscibility gap) to a slab-like configuration of two parallel flat interfaces. Extending the analysis of M. Schrader, P. Virnau, and K. Binder [Phys. Rev. E 79, 061104 (2009)], we extract the surface free energy gamma (R) of both spherical and cylindrical droplets and bubbles in the vapor-liquid case, and present evidence that for R -> Infinity the leading order (Tolman) correction for droplets has sign opposite to the case of bubbles, consistent with the Tolman length being independent on the sign of curvature. For the symmetric binary mixture the expected non-existence of the Tolman length is confirmed. In all cases {and for a range of radii} R relevant for nucleation theory, gamma(R) deviates strongly from gamma (Infinity) which can be accounted for by a term of order gamma(Infinity)/gamma(R)-1 ~ 1/R^2. Our results for the simple Lennard-Jones fluid are also compared to results from density functional theory and we find qualitative agreement in the behavior of gamma(R) as well as in the sign and magnitude of the Tolman length.Comment: 25 pages, submitted to J. Chem. Phy
    • …
    corecore